
2014, pages 1–8
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu084

Systems biology Advance Access publication February 10, 2014

Identifying critical transitions of complex diseases based on a

single sample
Rui Liu1, Xiangtian Yu2,3, Xiaoping Liu4, Dong Xu5, Kazuyuki Aihara4 and Luonan Chen2,4,*
1School of Mathematics, South China University of Technology, Guangzhou 510640, China, 2Key Laboratory of Systems
Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences, Shanghai 200031, China, 3School of Mathematics, Shandong University, Jinan 250100,
China, 4Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, University of
Tokyo, Tokyo 153-8505, Japan and 5Department of Computer Science and Christopher S. Bond Life Sciences Center,
University of Missouri, Columbia, MO 65211, USA

Associate Editor: Janet Kelso

ABSTRACT

Motivation: Unlike traditional diagnosis of an existing disease state,

detecting the pre-disease state just before the serious deterioration of

a disease is a challenging task, because the state of the system may

show little apparent change or symptoms before this critical transition

during disease progression. By exploring the rich interaction informa-

tion provided by high-throughput data, the dynamical network bio-

marker (DNB) can identify the pre-disease state, but this requires

multiple samples to reach a correct diagnosis for one individual,

thereby restricting its clinical application.

Results: In this article, we have developed a novel computational

approach based on the DNB theory and differential distributions be-

tween the expressions of DNB and non-DNB molecules, which can

detect the pre-disease state reliably even from a single sample taken

from one individual, by compensating insufficient samples with exist-

ing datasets from population studies. Our approach has been vali-

dated by the successful identification of pre-disease samples from

subjects or individuals before the emergence of disease symptoms

for acute lung injury, influenza and breast cancer.
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1 INTRODUCTION

Based on only one single sample from an individual, traditional

biomarkers can indicate whether the sample is in a given disease

state or not; however, they cannot generally diagnose the pre-

disease state, which can be viewed as a special normal state

just before major deterioration or critical transition to a disease

(Fig. 1a). In other words, it is a highly challenging problem to

distinguish the pre-disease state from the normal state because

there may be little apparent difference between these two states,

in contrast to the generally significant difference between the

normal state and the disease state (or the early disease state).

One way to detect early signals of an abrupt change in a

system, is to directly construct a mathematical model for the

system and predict the progression details (Hirata et al., 2010;

May et al., 1977). However, in most realistic cases, such a model

for a specific system or a disease is not available due to the

complicated and uncertain nature of most such systems. The

critical slowing-down theory (Strogatz et al., 1994) provides a

useful way to detect the early warning signals of critical transi-

tions for a general system (Scheffer et al., 2009), and has been

applied to ecosystems (Carpenter et al., 2005, 2006, 2011; Drake

and Griffen, 2010; Scheffer et al., 2001), climate systems (Dakos

et al., 2008; Lenton et al., 2008; Held and Kleinen, 2004; Kleinen

et al., 2003), economics and global finance (Kambhu et al., 2007;

May et al., 2008). However, there are two main limitations to this

method: (i) it requires a series of time-course data for each indi-

vidual, i.e. a large number of samples for each subject; (ii) the

measurements are required to cover those variables that show the

critical slowing-down dynamics, i.e. extensive knowledge on

the system is required. Clearly, for many complex systems, in

particular, biomedical systems, it is generally difficult to obtain

data (or a model) of an individual satisfying both these condi-

tions. In fact, typical data currently available for molecular biol-

ogy and medicine are high-throughput OMICS data with a small

number of samples (for each individual) but high dimensions.

Although these data usually lack dynamic information due

to the small number of time-course samples, they are still valu-

able because of the rich information regarding correlations or

interactions among many variables of the high-throughput meas-

urements. With rapid advancements in high-throughput technol-

ogies, OMICS data have been measured and made available for

complex diseases such as asthma attacks (Venegas et al., 2005),

epileptic seizures (Litt et al., 2001) and many others (He et al.,

2012; Liu et al., 2001; McSharry et al., 2003; Paek et al., 2005;

Roberto et al., 2003). To overcome the two problems of the

critical slowing-down method, a new model-free approach, the

dynamical network biomarker (DNB), was developed to detect

early warning signals of complex diseases even with a small

number of samples (Chen et al., 2012; Liu et al., 2012). By

exploring fluctuation and correlation information among mol-

ecules, the DNB can identify the pre-disease state (Fig. 1a) and

thus predict the critical transition before a serious deterioration,

in contrast to diagnosing the disease state by traditional*To whom correspondence should be addressed.
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Fig.1. Outline for identifying the pre-disease state based on a single sample by DNB.  This outline shows how the DNB-S score identifies the pre-disease state based on a single sample. (a) Disease progression can be divided into three stages, i.e., normal, pre-disease, and disease states, where the pre-disease state is a special ``normal'' state just before the drastic transition (serious disease deterioration). There are generally significant differences between the normal and disease states, but there may not be apparent differences between the normal and pre-disease states. (b) Assume that there is a single case-sample and a number of control-samples (or normal samples). Furthermore, the DNB is assumed to be available, e.g., from previous studies. We aim to diagnose whether a single case sample is in the pre-disease state or not. (c) DNB molecules have double-peak distribution in the pre-disease state (the DNB case) but show single-peak distribution in the normal state (the DNB control), while non-DNB molecules show single-peak distribution in the pre-disease state (the non-DNB case). The horizontal axis represents gene expression levels in the log scale as an example. By exploiting such differential distributions in a single sample, i.e., the K-L distribution distance, a composite index (i.e., the DNB-S score) is constructed to diagnose single samples. (d) The DNB-S score is relatively high when the case sample is in the pre-disease state and relatively low when the case sample is in the normal state. Thus, we can identify the pre-disease state with a single sample using the DNB-S score, i.e., we can detect the early-warning signal of the disease state.the DNB can identify the pre-disease state (Fig. 1a
http://bioinformatics.oxfordjournals.org/


biomarkers. Moreover, it has been shown that those molecules in

DNB are not necessarily the result of the disease but make the

first move from the normal state toward the disease state in a

collective manner through a critical transition (Liu et al., 2012).

One significant feature of DNBmembers (or molecules) is that in
the pre-disease state, they fluctuate dynamically and are strongly

correlated. Therefore, this group of molecules, or the DNB can

characterize the dynamic features of the underlying system, and

provide early warning signals for detecting the imminent critical

transition (Liu et al., 2013a, b, c). The DNB has been successfully

applied to many complex diseases, such as liver cancer, to detect
sudden deterioration and study the underlying mechanisms

(Chen et al., 2012; Liu et al., 2012, 2013a, b, c; Li et al., 2013).

Although the DNB can identify the pre-disease state, it still
requires multiple samples for an individual, thereby restricting its

clinic application. Clearly, identifying the pre-disease state with

only a single sample in a reliable manner is challenging but of

great importance, since it provides not only a feasible and

cost-effective method for clinic diagnosis but also significantly
relieves the burden of sample collections for individuals. In this

article, by exploring the differential distributions of DNB mem-

bers and non-DNB members, we developed a novel computa-
tional method for efficiently and accurately identifying the pre-

disease state before the critical transition in a complex disease

with just a single sample (Fig. 1b).
Specifically, DNB molecules typically have a double-peak dis-

tribution in the pre-disease state owing to their strongly fluctuat-
ing and correlated nature in the pre-disease stage, but have a

single-peak distribution in the normal state due to their dynam-

ically stable behavior in the normal stage (see Supplementary
Material A for details). On the other hand, non-DNB molecules

are observed to show a single-peak distribution even in the pre-

disease state due to their stable behavior (Fig. 1c). Thus, differ-
ential distributions between those groups of molecules can be

identified from a single sample provided there are multiple con-
trol samples, which are generally available in practice. In this

article, we use Kullback–Leibler divergence (K–L divergence),

which measures the difference between two data distributions
to formulate the DNB single-sample score (the DNB-S score)

by three factors. Each factor in the DNB-S score reflects an

aspect of the dynamic features when the system is near a transi-
tion point (Fig. 1). Based on this scheme, a new scoring criterion,

i.e. the DNB-S score, was proposed as a quantitative measure-

ment of each sample (Fig. 1d). Note that too few genes in the
DNB may give a biased result due to incomplete information on

the distribution.
Moreover, we have theoretically and numerically shown that

the DNB-S score is relatively high when the system is in a pre-

disease state, and relatively low when the system is in a normal or
disease state. Hence, the DNB-S score provides a reliable signal

to identify the pre-disease state. Both theoretical and computa-

tional results show that high-dimensional information of data
can be utilized to compensate insufficient samples (Huang

et al., 2011; Sciuto et al., 2005; Saeki et al., 2009), which is the

main reason why DNB can detect the pre-disease state by a
single sample with high-throughput measurements.

In addition, our previous study indicates that the DNB-S score
is a model-free approach that can be theoretically applied to any

disease or biological system with clear transition events.

Furthermore, the DNB-S score in this work is not used for iden-
tifying the critical transition point or early disease state but for

detecting the state just before the critical transition point (i.e. the

pre-disease state), and therefore, in comparison with existing
methods, it is of great importance for the early diagnosis of com-

plex diseases. To demonstrate the effectiveness and efficiency of

the theoretical work, we applied our method to detect the pre-
disease state for three diseases by single samples, i.e. lung injury

induced by carbonyl chloride inhalation exposure (GSE2565),

MCF-7 human breast cancer resulting from heregulin (HRG)
(GSE13009) and human influenza infection caused by H3N2

virus (GSE30550), all of which successfully validated our

predictions.

2 METHODS

We first describe the theoretical basis, i.e. the DNB theory, and the math-

ematical basis of the DNB-S score, and then provide the procedures used

Fig. 1. Outline for identifying the pre-disease state based on a single

sample by DNB. This outline shows how the DNB-S score identifies

the pre-disease state based on a single sample. (a) Disease progression

can be divided into three stages, i.e. normal, pre-disease and disease

states, where the pre-disease state is a special ‘normal’ state just before

the drastic transition (serious disease deterioration). There are generally

significant differences between the normal and disease states, but there

may not be apparent differences between the normal and pre-disease

states. (b) Assume that there is a single case-sample and a number of

control–samples (or normal samples). Furthermore, the DNB is assumed

to be available, e.g. from previous studies. We aim to diagnose whether a

single case sample is in the pre-disease state or not. (c) DNB molecules

have double-peak distribution in the pre-disease state (the DNB case) but

show single-peak distribution in the normal state (the DNB control),

while non-DNB molecules show single-peak distribution in the pre-

disease state (the non-DNB case). The horizontal axis represents gene

expression levels in the log scale as an example. By exploiting such dif-

ferential distributions in a single sample, i.e. the K–L distribution dis-

tance, a composite index (i.e. the DNB-S score) is constructed to diagnose

single samples. (d) The DNB-S score is relatively high when the case

sample is in the pre-disease state and relatively low when the case

sample is in the normal state. Thus, we can identify the pre-disease

state with a single sample using the DNB-S score, i.e. we can detect the

early warning signal of the disease state
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to preprocess input datasets. The detailed algorithm for the DNB-S score

is given in Supplementary Material C.

2.1 Theoretical basis

Disease progression can be generally divided into three stages, i.e. (i) the

normal state, (ii) the pre-disease state and (iii) the disease state (Fig. 1a).

The normal state is a ‘healthy’ stage, in which the state change is gradual.

The pre-disease state is actually the limit case of the normal state just

before the critical transition. Further progression in the pre-disease state

will result in a drastic state change to the disease state. However, the pre-

disease state is considered reversible to the normal state because appro-

priate medical treatments or a change in lifestyle can convert this state

back to a normal state. On the other hand, the disease state represents a

seriously ill stage, from which is difficult to return to the normal state,

even with advanced treatment, in the case of major complex diseases such

as cancer and diabetes.

Traditional biomarkers, e.g. molecular biomarkers and network bio-

markers, are designed to distinguish disease samples from normal samples

(Liu et al., 2013a, b, c). For example, a molecule is taken as a biomarker if

its abundance (or expression) is significantly higher or lower in the disease

state than in the normal state, thereby reflecting the severity or presence

of the illness in the disease state (Supplementary Fig. S1a). On the other

hand, the DNB scheme aims to distinguish pre-disease samples from

normal samples according to the correlations and fluctuations of DNB

molecules (Supplementary Fig. S1a, b, d and e) (Liu et al., 2013a, b, c).

In other words, the DNB method aims to screen out a group of strongly

correlated and wildly fluctuating molecules, which are also called ‘the

leading network’ (Liu et al., 2012) because those molecules may together

make the first move to lead the whole system from the normal state to the

disease state.

Although elucidating the critical transition at the network level holds

the key to understanding the fundamental mechanism of disease devel-

opment and progression, it is notably hard to reliably identify the pre-

disease state because there are few apparent differences between the

normal and pre-disease states (Fig. 1a); note that a pre-disease state is

still a normal state, i.e. it is the limit of the normal state just before the

disease state. This is also the reason why diagnosis based on traditional

biomarkers may fail to indicate the pre-disease state (Supplementary

Fig. S1c). The theoretical basis for the DNB is summarized by the fol-

lowing conditions, which have been proved to hold simultaneously when

the system approaches the pre-disease state (see Supplementary Material

A for details):

(1) The deviation of a group of molecules, called the DNB from the

property of the whole population, drastically increases, i.e. the

fluctuation condition.

(2) The average correlation between any two molecules in the DNB

increases, i.e. the correlation or internal connection condition.

(3) The average correlation between any molecule in the DNB and

another in the non-DNB decreases, i.e. the correlation or external

connection condition.

(4) There are no significant changes in the deviations and correlations

of molecules among the remaining molecules of the system, i.e. the

non-DNB.

The above four conditions together define the DNB. The DNB genes

can be detected by the algorithms (Chen et al., 2012; Liu et al., 2013a, b, c)

based on the above conditions, but in this work we assume that DNB genes

are available for each disease (see Supplementary Materials D and E for

cross-validation tests), by which we further identify the pre-disease state

with a single sample. Dynamics satisfying the preceding conditions can be

viewed as local herding behavior, i.e. members in a group or subnetwork

act together without planned direction (or show strongly correlated

fluctuation in the whole group). These conditions imply an imminent

regime shift or phase transition, and therefore, are used in DNB theory

to signal the emergence of the critical transition. Such a phenomenon can

also be described as a condition where all the DNB molecules become

dynamically correlated or connected so that the system can be reorganized

or reconnected in a different way or regime (state).

However, directly applying the above conditions requires multiple

samples from an individual who may not even have clinic disease symp-

toms, which restricts the clinic application. Next, we derive a new criter-

ion, i.e. the DNB-S score from a single sample by exploring interaction

information from high-throughput data based on the above conditions,

which can compensate for the insufficient samples.

2.2 Differential distributions by K–L divergence

From the theoretical result ofDNB,DNBmolecules are typically expected

to have a double-peak distribution in the pre-disease state due to their

significant differential expression and strongly correlated fluctuation

nature (conditions 1–3), but non-DNB molecules have a single-peak dis-

tribution even in the pre-disease state due to their stable behavior (condi-

tion 4) (see Supplementary Material A for details). On the other hand, in

the normal state, both the DNBand non-DNBmolecules have single-peak

distributions due to their dynamically stable behavior (Fig. 1). These dif-

ferential distributions between DNB and non-DNB molecules and be-

tween DNB molecules of normal and pre-disease states can be identified

from a single sample provided that there are multiple control samples,

which are generally available in practice. In this article, we use the K–L

divergence, which measures the difference between two data-distribution

patterns to formulate the DNB-S score based on three factors (Fig. 1).

For two discrete probability distributions P and Q, i.e. those of DNB

molecules or non-DNB molecules with normalized values, the K–L

divergence of Q from P is defined as

DKL P,Qð Þ ¼
X
k

ln
P kð Þ

Q kð Þ

� �
P kð Þ, ð1Þ

where P(k)¼ProbP(x¼xk) and Q(k)¼ProbQ(y¼ yk) withX
k

P kð Þ ¼ 1 and
X
k

Q kð Þ ¼ 1:

In an information theory context (Cover et al., 2005), K–L divergence

is actually the relative entropy, i.e.

DKL P,Qð Þ ¼ H P,Qð Þ �H Pð Þ, ð2Þ

where HðP,QÞ is the cross entropy of P and Q, and is related to the

information lost in P if only Q is known. DKL(P, Q) is zero only when

the distribution P is identical with Q, and is positive otherwise.

The K–L divergence was originally proposed for measuring the differ-

ence between two data distributions (Kullback et al., 1968, 1987) and fur-

ther extended to serve as a theoretical basis for data differencing (Shamilov

and Giriftinoglu, 2010), outlier detection (Oh et al., 2008) and evaluating

sample similarity (Lindorff-Larsen and Ferkinghoff-Borg, 2009; Zhou and

Chellappa, 2006). Assuming that PA and PB are two datasets, respectively,

for variables or measurements in two samples (A, B), if the score DKL(PA,

PB) is zero, then the two samples represent the same amount of informa-

tion, thereby possessing the most similarity. During the progression of a

complex disease, if the K–L divergence of two samples is very small, then it

is natural to regard that the stages from which the samples are derived are

very similar. Thus, the K–L divergence is a natural choice for comparing

two samples with a number of measurements.

2.3 Data processing and algorithm

Three gene-expression-profiling datasets were downloaded from theNCBI

GEO database (ID: GSE2565, GSE13009, GSE30550) (www.ncbi.nlm.

nih.gov/geo). In these datasets, probe sets without corresponding gene
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symbols were not considered in our analysis. The expression values of

probe sets mapped to the same gene were averaged. Genes in the DNBs

for the three diseases were linked and correlated based on combined func-

tional coupling information from various databases of protein–protein

interactions such as STRING, FunCoup and BioGrid.

In each disease dataset, expression profiling information was individu-

ally mapped to the integrated networks to identify the corresponding

DNB. For each species, we downloaded biomolecular interaction net-

works from various databases, including BioGrid (www.thebiogrid.org),

TRED (www.rulai.cshl.edu/cgi-bin/TRED/), KEGG (www.genome.jp/

kegg) and HPRD (www.hprd.org). First, the available functional linkage

information for Mus musculus and Homo sapiens was downloaded from

these databases and combined. For instance, after removing any redun-

dancy, we obtained 37950 linkages in 6683 mouse proteins/genes for

acute lung injury. Next, the genes evaluated in these microarray datasets

were mapped individually to their integrated functional linkage networks.

For the influenza dataset, gene-expression profiles were obtained and

measured on whole peripheral blood drawn from all subjects at an inter-

val of 8 h post inoculation (hpi) through 108 hpi. A total of 267 gene

microarrays were obtained for all subjects at 16 time points, including the

baseline (224 hpi). Networks were visualized using Cytoscape (www.

cytoscape.org). Besides, the dataset for breast cancer was obtained in

an experiment on the MCF-7 cell line with HRG stimulation. The algo-

rithm of the DNB-S score and its application to the three real datasets are

described in Supplementary Materials C and D.

2.4 Functional analysis

As described in Supplementary Material D, we performed pathway-en-

richment analysis and -functional analysis for the identified DNBs of the

three diseases. The full list of DNBs is provided in the Supplementary

Table ‘Identified DNBs’.

3 RESULTS

We use a single sample with high-throughput data, e.g. genomics

or proteomics data, to identify the pre-disease state or early warn-

ing signal of a disease based on theDNB-S score. Achieving such a
reliable diagnosis is of great importance in clinic application since

one sample can be obtained much more easily than multiple sam-

ples for each individualwho does not yet exhibit any disease symp-

toms during the short period before the critical transition.

3.1 Identifying the pre-disease state from a single sample

By exploring the dynamical properties of the underlying system

near a critical point, we are in a position to design a computa-

tional method for identifying the pre-disease state based on a

single case sample. First, remember that there are two groups

of variables in the high-throughput data in a single sample, i.e. a

group of DNB members and a group of non-DNB members (or

the remaining molecules except DNB members in the system).
We define the DNB-S score to identify the pre-disease state when

only a single case sample is available (see Supplementary

Material A). Specifically, given a single case sample, a number

of control samples (or normal samples) and the identified DNB,

we can construct a composite index I for the pre-disease state

based on the differential distributions between the case sample

and the control samples:

I ¼
DKL caseDNB, controlDNBð Þ �DKL caseDNB, casenon�DNBð Þ

"þDKL casenon�DNB, controlnon�DNBð Þ

ð3Þ

which is called the DNB single-sample score (DNB-S score).

Here, " is a small positive number to avoid zero division. We

require a number of control samples to obtain a stable back-

ground distribution. Owing to the nature of the DNB (conditions

1–4), when the system approaches the pre-disease state from the

normal state, the terms of the DNB-S score (3) have the follow-

ing features:

� The K–L divergence of the case sample and the control

samples of the DNB, i.e. DKL(caseDNB, controlDNB) in-

creases due to high differential distributions of the DNB

members between the case sample and the control samples,

i.e. DNB molecules are typically expected to have a double-

peak distribution in the pre-disease state, which is com-

pletely different from the single-peak distribution of DNB

molecules in the normal state (as demonstrated in the

numerical simulation in Fig. 2c).

� The K–L divergence of the case sample between DNB and

non-DNB molecules, i.e. DKL(caseDNB, casenon-DNB) in-

creases due to high differential distributions between DNB

members and non-DNB, i.e. DNB molecules are typically

expected to have a double-peak distribution in the pre-

disease state, which is completely different from the single-

peak distribution of non-DNB molecules in the pre-disease

state (as shown in Fig. 2d).

Clearly, the above two terms in the criterion are mainly used to

detect the pre-disease state. On the other hand, when the system

moves to the disease state after passing the pre-disease state, the

third term of the DNB-S score (3) has the following feature:

� The K–L divergence of the case sample and the control

samples of non-DNB, i.e. DKL(casenon-DNB, controlnon-

DNB) has no significant change in both the normal and

pre-disease states, but usually increases in the disease state

due to differential distributions of non-DNB members be-

tween case and control samples in the disease state, i.e. non-

DNB molecules are typically expected to exhibit similar

single-peak distributions in both normal and pre-disease

states, but have different average values or distributions

for normal and disease samples.

Different from the pre-disease and normal states, significant

differences between the disease and normal states are expected

(from the third feature). Thus, the K–L divergence between case

and control samples of non-DNB usually increases in the disease

state, resulting in a low level of the DNB-S score. Therefore, the

third term in the criterion also contributes to distinguish between

the disease state and the pre-disease state. However, the pre-

disease state can be detected mainly by the first two terms in

the criterion.
Integrating the above properties, we can detect the pre-disease

state based on a single case sample by the DNB-S score (3); that

is, if the criterion (3) is much higher than a threshold, then the

case sample is diagnosed as being in the pre-disease state.

Actually, the combined criterion from the three terms also re-

duces the effects of noise and data errors, and thus improves the

sensitivity for detecting the critical information in a pre-disease

sample.
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3.2 Numerical experiments

To demonstrate the effectiveness of the DNB-S score, we used a

theoretical model of a 16-node network (Fig. 2a) to generate data

for each subject or sample. Data for five single-sample subjects

were generated and used for validation. Detailed descriptions of

the network represented by a set of stochastic differential equa-

tions are provided in Supplementary Material B, and the results

of numerical experiments are provided in Figure 2. In particular,

we obtained the following results.

� When the system is near the critical point (i.e. the parameter

P approaches the critical value 0), the DNB-S score (or the

two terms in the nominator of the criterion) is in a high level

or well above the threshold line (Fig. 2b).

� When the system passes the critical point and is in the dis-

ease state (i.e. the parameter P is negative), the term in the

denominator of the composite index is at a high level, which

results in a lower value of the DNB-S score.

The numerical experiment validates that the DNB-S score is

reliable and accurate in identifying the pre-disease state and thus

provides the early warning signal of a catastrophic change in the

system. Besides, the state changes of the system for all nodes are

also presented in Figure 3, from which it can be seen that the

DNB group, i.e. a dominant group composed by nodes z1,

z2, . . . , z7, shows a clear early warning signal by their coordinated

dynamic behavior in a collective manner. Note that there is no

clear signal to detect the imminent transition from a single

variable (or a few variables) due to the noise (or stochastic

fluctuations) of the original biological system (Fig. 3), which

demonstrates the advantage of exploiting high-dimensional in-

formation using the DNB scheme. In other words, if there is no

detailed model for a biological system, generally we do not know

which variable can reflect the critical change of the system so as

to measure it. As shown in this example, given high-throughput

data or high-dimensional information, the DNB-S score provides

a way to detect the signal for diagnosing the pre-disease state

even without a detailed model.

3.3 Application to three diseases

We further applied the DNB-S score to three diseases using high-

throughput real data, i.e. microarray data for live influenza in-

fection (humans) caused by H3N2 virus (GSE30550), acute lung

injury (rats) induced by carbonyl chloride inhalation exposure

(GSE2565) and MCF-7 human breast cancer caused by here-

gulin (HRG) (GSE13009). The detailed algorithm and data de-

scriptions are presented in Supplementary Materials C and D,

respectively. It is worth mentioning that although time series

data are available for each of the three diseases, we identified

the pre-disease states in one data point at a time independently,

i.e. using a single sample in each identification. Figures 4–6 show

the identified pre-disease states just before the critical deterior-

ations based on the DNB-S score, which agrees well with the

observed biological phenotypes described in the original datasets

(Huang et al., 2011; Saeki et al., 2009; Sciuto et al., 2005).
Specifically, Figure 4 shows the DNB-S scores for live influenza

infection of 17 subjects (17 humans), in which nine subjects were

diagnosed as having influenza infection or clinic symptoms

(symptomatic subjects) 45h later and eight subjects were classified

as non-symptoms (asymptomatic subjects) during the whole study

period (Huang et al., 2011). Figure 4a shows the clinic symptoms

(S) and non-symptoms (N) among the 17 subjects with live influ-

enza infection based on real clinic tests. In Figure 4b, we identified

Fig. 2. Numerical validation of the theoretical model. (a) The graph is a

16-node network. z1, z2, . . . , z7 are DNB members derived from the dy-

namic data. The critical transition is at parameter P¼ 0 in the theoretical

model, where the system undergoes a critical transition driven by DNB or

the leading network composed of zi (i¼ 1, 2, . . . , 7). (b) shows five samples

of the composite index (DNB-S score). Clearly, the DNB-S score for each

sample is very high (far beyond the threshold line) when the system is in

the pre-disease state as the parameter P approaches the critical value 0.

(c) The distributions, respectively, for the normalized DNB control data

and normalized DNB case data, which are clearly distinct. The distribu-

tion of DNB molecules in a case data (or sample) shows a double peak

whereas the distribution in a control data has a single peak. (d) presents

the distributions for the normalized DNB case data (double peak) and

normalized non-DNB case data (single peak), which show significant

differences. (c) and (d) present the two important terms of the DNB-S

score

Fig. 3. States of the 16-node network with changing the value of the

parameter P. The expression values of the 16 nodes (or state variables)

under different values of the parameter P are shown in the graphs.

Clearly (i) there are random fluctuations for each node far before the

critical transition due to noise; (ii) there are no significant changes for any

non-DNB node, e.g. z8, z9, . . . , z16, before the critical transition. Thus, a

traditional scheme (e.g. critical slowing-down) based on only one or a few

variables cannot correctly signal the pre-disease state. In other words,

based on the integration of the collective dynamics of a subnetwork,

the DNB, i.e., z1, z2, . . . , z7 (the graphs in left column), is expected to

provide reliable and correct early warning signals in the pre-disease state,

i.e. the expressions of DNB members increasingly fluctuate in a collective

manner as the system approaches the critical point
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the pre-disease states (early diagnosed pre-symptom) of nine

symptomatic subjects before the appearance of clinic symptoms,

while our DNB-S scores indicated the absence of pre-
disease states for the other eight asymptomatic subjects shown

in Figure 4c. Clearly, the identified pre-disease states are respect-
ively from 29 to 45h, which are well before the earliest clinic

symptom that appeared at 45h for the nine symptomatic subjects

based on the original clinic tests, thereby validating our method

and the pre-disease states (see Fig. 4a). Hence, our early diagnoses

agree with the original results (Huang et al., 2011). In addition, a

figure illustrating dynamic changes of the whole molecular net-

work of a single-sample subject (i.e. Subject 1) from 0 to 45h is

shown in Figure 4d, where a strong signal for the pre-disease state

can be observed at 29h, and a complete representation of all the

three terms in the DNB-S score is provided as Supplementary

Figure S10. From Figure 4a, it can be seen that for all the nine

symptomatic subjects, the DNB-S score is higher in the pre-

disease states and thus detects the early warning signal of the

deterioration before clinic symptoms could be observed, whereas

the DNB-S score correctly shows no signals for eight clinic

asymptotic subjects. It can be seen that the pre-disease stages

for Subjects 8, 10, 12, 13 and 15 are longer than those for

Subjects 1, 5, 6 and 7. Furthermore, there are multiple critical

stages (pre-disease states) for Subjects 12, 13 and 15, which may

Fig. 4. Identifying the pre-disease state for live influenza infection of 17

humans based on a single sample. We demonstrate early diagnosis of live

influenza infection in 17 humans using a real biomedical dataset. (a) The

clinic symptoms (S) and non-symptoms (N) at different time points

among the 17 subjects with live influenza infection based on real clinic

tests. (b)-(c) show the DNB-S scores of nine single-sample symptomatic

subjects (humans) and eight asymptomatic subjects (humans) for influ-

enza infection resulting from H3N2 virus. The pre-disease states or pre-

symptom for influenza infection occurred around 29h (i.e. 29, 36 and

45h), whereupon the DNB-S scores became respectively higher than the

threshold shown in (b). All symptomatic subjects were correctly identified

before the clinical diagnosis of the disease state (b), whereas all asymp-

tomatic subjects showed no signals of the pre-disease states and were also

correctly classified (c). (d) The dynamic changes in the molecular network

of a single-sample subject (Subject 1) at 0, 12, 29 and 45h (sliding

window) with the corresponding DNB, where the color of the nodes

represents the fluctuation strength of molecular expressions, and each

edge represents the correlation between two nodes. It can be seen

that at 29h, there is a strong signal to indicate the pre-disease state or

pre-symptom

Fig. 5. Identifying the pre-disease state for acute lung injury induced by

carbonyl chloride inhalation exposure based on a single sample. (a and b)

Six single case subjects (rats) and six control subjects (rats) for acute lung

injury induced by carbonyl chloride inhalation exposure. In (a), it can be

seen that the DNB-S scores are well above the threshold line (blue line) at

4 and 8h, much before the 24h time point in the disease state. All case

samples or case subjects were correctly identified before the onset of ser-

ious deterioration of the disease state (a), whereas all normal samples

show no signal pertaining to the pre-disease state and were also correctly

classified (b)

Fig. 6. Identifying the pre-disease state for human breast cancer caused

by heregulin (HRG) based on a single sample. In this figure, the pre-

disease state is identified as being �2h, at which both of the DNB-S

scores are higher than the threshold (blue line). Both the case samples

and case subjects were correctly identified before the serious deteriorated

disease state
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represent multiple deterioration processes for these three subjects.
Actually, there is an approximate 24h interval for these three
critical stages, i.e. 36! 60! 84h, which may be related to the

immune responses of the three subjects before the eventual defeat
to the disease state; the analyses of their mechanisms will be con-
sidered as a future research topic.

Figure 5a shows the DNB-S scores for six single case subjects
of acute lung injury, where between 1 and 12h, the DNB-S
scores were all above the threshold line. Therefore, we identified

the pre-disease state at �4h. In the original experiment, a
50–60% mortality was routinely observed after 12 h and a
60–70% mortality was observed after 24 h (Sciuto et al., 2005).

The major deterioration on average thus emerges �24h (the 7th
sampling time point). It can be seen from Figure 5a that the
DNB-S scores are well above the threshold line at 4 and 8h,

which indicates the pre-disease state before the critical point at
24 h. Moreover, all control samples correctly show no signal

based on the DNB-S score (Fig. 5b). Therefore, using a single
case sample, the DNB-S score is able to identify the pre-disease
state, which is consistent with our previous results (Chen et al.,

2012; Liu et al., 2012) and the observed experimental results
(Sciuto et al., 2005). The curves for the three terms in the criter-
ion are provided in Supplementary Figure S8.

Figure 6 shows the DNB-S scores for two single-sample sub-
jects of HRG-induced breast cancer, where the DNB-S scores are
all above the threshold line at 2 h. Therefore, we identified the

pre-disease state in each case before 4 h. In the original experi-
ment, the stimulation of MCF-7 breast cancer cells with epider-
mal growth factor and HRG resulted in very similar early

transcription profiles up to 90min; however, subsequent cellular
phenotypes differed after 3 h (Saeki et al., 2009), which suggests
that the deterioration is�3h. These results are in agreement with

the original experimental results (Saeki et al., 2009). The curves
for the three terms in the composite index are provided in

Supplementary Figure S9.
The successful application of the DNB-S score in the three real

datasets demonstrate the effectiveness of our method in identify-

ing the pre-disease state and thus provide early diagnosis of crit-
ical transitions on the basis of just a single sample. The detailed
algorithm and data descriptions for the three diseases are pro-

vided in Supplementary Materials C and D, respectively. To val-
idate the effectiveness and accuracy of the identified DNBs as
well as the DNB-S score, leave-one-out cross-validation was car-

ried out and is provided in Supplementary Material E. The iden-
tified DNBs for the diseases are given in the Supplementary
Table ‘Identified DNBs’.

4 DISCUSSION

In this article, we developed a novel computational method, i.e.
the DNB-S scoring method, to identify the pre-disease state of a
disease on the basis of a single sample, which facilitates early

diagnosis before the disease state or its serious deterioration.
From the viewpoints of both theoretical analysis and numerical
computation, we have demonstrated that the DNB-S score is

sensitive to any sample near the pre-disease state. All the results
show that we identified the pre-disease state, i.e. the state just
before a critical transition to the disease state, rather than the

disease state targeted by traditional biomarkers. By developing

this method, we also found that a single case-sample with high-

throughput measurements actually has enriched information suf-

ficient for early diagnosis even if there is no reliable disease

model (i.e. the underlying mechanism of disease deterioration

is unclear). In other words, the DNB-S score is a model-free

approach, which is capable of exploiting high-dimensional infor-

mation (or interaction information on high-dimensional data)

and thus distinguishing pre-disease samples from normal ones.
Our study makes two main contributions. First, the DNB-S

score can identify the pre-disease state before moving into the

deteriorated disease state by a critical transition, rather than

diagnosing the disease state. Therefore, it has profound potential

to achieve ‘real’ early diagnosis for complex diseases. Second, the

DNB-S score can detect the pre-disease state with only a single

sample for each individual, which is of great importance for

clinic applications in realistic cases such as clinic testing

and personalized healthcare. All the results show that high-

dimensional information of data can be used to compensate

for insufficient samples, which is the major reason why the

DNB-S score can detect the pre-disease state from a single

high-throughput sample.
It is also worth noting that this method is based on the DNB

theory and thus the molecules in the DNB can be related to the

leading network of the disease. Those molecules may make the

first move from the normal state toward the disease state through

a critical transition, and thus, be causally related to disease-

driving genes or networks. Therefore, the DNB-S score can be

a reflection of the leading factors (the driving network or disease-

driving genes) to the serious deterioration of complex diseases. In

addition to the diagnosis of diseases, our method can be applied

to the analysis of other complex processes or phenomena in

biology, physics, ecology or even economics in a similar

manner provided that drastic state transitions are involved in

these processes, e.g. cell-differentiation and cell-cycle processes.
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